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Abstract:  A mathematical model is considered to study peristaltic transport of chyme in the small intestine during 

gastroenteritis infection.  The Jeffrey model fluid flow is used for the peristaltic flow of chyme in the intestine. The 

assumptions of peristaltic rush waves and asymmetric channel of the inner part of the small intestine are made. The 

equations governing the flow are simplified by applied low Reynolds number and long wave approximation. Exact 

solutions are obtained for velocity and pressure rise. The numerical computations are presented graphically. It is 

found that the frictional parameter favour the forward movement of chyme through the small intestine during 

gastroenteritis infection. 
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Introduction 

Chyme consists of water, hydrochloric acid, digestive 

enzymes and food-bolus, which passes from the stomach into 

the small intestine during metered (the periodic opening of the 

pyloric sphincter). It results from the mechanical and chemical 

breakdown of food-bolus   in the stomach and moves slowly 

through the pyloric sphincter into the duodenum, where the 

transport of chyme along the small intestine begins. 

Depending on the quantity and contents of the meal, the 

stomach will ground the food-bolus into chyme between 40 

min and a few hours (Akbar et al., 2013). Once the process of 

mastication of food is completed, the stomach propels chyme 

through the pyloric sphincter into the small intestine.  

The small intestine is the longest part of the gastrointestinal 

tract between the stomach and the large intestine. It has a 

single inlet and outlet, separated into three distinct regions: 

the duodenum, the jejunum, and the ileum. It can be described 

mathematically, as the longest, highly convoluted tube of 

about 6-7 m in length and has average radius of about 1.25 cm 

lying in the central laying in the central lower parts of 

abdomen (Guyton and Hall, 2006).  

Digestion of chyme in the small intestine involves two 

processes (i) mechanical digestion, is  the propulsion and 

mixing of chyme in the small intestine (ii) chemical digestion, 

responsible for the catabolic reactions that break down 

carbohydrates, proteins and lipids into small molecules that 

could be absorbed by the cell membranes. The movement of 

chyme along the small intestine is generated by (i) peristalsis, 

(ii) segmentation and (iii) pendular movements (Stavitskyet 

al., 1981). Peristalsis and segmentation are basic electrical 

rhythm movements that cause contractions of the circular 

muscle layer of the intestinal wall. Peristaltic contractions 

spread along down the intestine whereas segmentation 

contractions are stationary and local (Monica, 2011). Pendular 

movements, on the other hand, cause retropulsion of lumen 

contents with a characteristic back and forth pattern. 

Peristaltic waves propel chyme through the small intestine in 

about 3 - 6 h (Liu et al., 2003) with an average velocity of 1.0 

cm per min (Guyton and Hall, 2006). The waves are very 

weak and usually die out after travelling for about 3 - 5 cm, as 

a result the movement of chyme is very slow. Importantly, it 

spreads out (mixing) the content of the chyme along the 

intestine. 

Normally, peristalsis in the small intestine is very weak, but a 

very strong irritation of the intestine mucosa occurs in cases 

of gastroenteritis. This causes powerful and rapid peristalsis 

called peristaltic rush. The powerful peristaltic contractions 

travel long distances in the small intestine within few minutes, 

sweeping the contents of the intestine into the colon and 

thereby relieving the small intestine of irritativechyme and 

excessive distention. This condition is called hyper-motility or 

over-activity of the small intestine.  

Gastroenteritis is an intestinal infection which causes 

inflammation of the lining of the small intestine. It may be as 

a result of poor hygiene, contact with animals, consumed food 

or water that has been contaminated with bacteria and 

hormonal changes during menstruation. There are different 

types of bacteria that can cause gastroenteritis namely: 

Staphylococcus, Salmonella, Yersinia, Shigella, 

Campylobacter, E. coli, etc. The symptoms of the 

gastroenteritis include: diarrhea, abdominal pains and cramps, 

loss of appetite, nausea and vomiting, blood in stools and 

fever. 

The greatest danger ensuing from this infection is 

dehydration. The potential danger of dehydration is greatest 

among children. This represents a large percentage of the 

problems confronting the public health care both in developed 

and developing countries. The World Health Organization 

(WHO) estimated that in developed countries, up to 30% of 

the population suffers from gastroenteritis yearly, while in 

developing countries up to two (2) million deaths are 

estimated per year (World Health Organization, 2007).  

It thus becomes necessary to study the Mathematical structure 

of the movement of chyme along the small intestine during 

infection of Gastroenteritis. A Mathematical understanding of 

the structure of the infected small intestine may provide useful 

information about the dehydration problems among children 

and adults particularly in the developing countries. 

In view of the above discussions, Mathematical studies of the 

peristaltic transport of chyme in the small intestine have been 

have carried out by many researchers (Akbar et al., 2013, 

Riahi and Roy, 2011; Tripathi, 2012). Most of the researchers, 

studied peristaltic flow of chyme in the small intestine using 

Newtonian/non-Newton fluid model which does not possess 

physical properties of chyme. Physically, chyme can be 

described as semi-fluid which possesses both viscous and 

elastic properties.  The Jeffery model is the viscoelastic model 

which constitutes viscous and elastic characteristics in the 

formulation of the semi – fluid. For examples, bread, fruit jam 

and almost edible semi-solids bear both viscous and elastics 

properties which can be simulated using the Jeffery 

viscoelastic model (Tripathiet al., 2013). 

Hayaet al. (2006) studied peristaltic flow in a tube with an 

endoscope using Jeffrey viscoelastic model. Hayat and Ali 

(2008) investigated peristaltic motion a Jeffrey fluid under the 

effect of magnetic field in a tube. Kothandapani and Srinivas 

(2008) studied peristaltic transport of a Jeffrey fluid under the 

effect of magnetic field in an asymmetric channel. Also, 
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Nadeem and Akam (2010) studied slip effects on the 

peristaltic flow of a Jeffrey fluid in an asymmetric channel 

under the effect of induced magnetic field. The authors 

discussed the effect of magnetic field, relaxation and 

retardation time on the peristaltic transport.  

Motivated by the aforementioned studies and in view to 

increase understanding of peristaltic transport of chyme in the 

small intestine, we present a mathematical model for the 

peristaltic flow of chyme in the gastroenteritis infected small 

intestine. Jeffrey fluid model is used for chyme and 

asymmetric channel is used for the channel of flow in the 

small intestine. 

 

Mathematical formulation  

Consider peristaltic flow of a Jeffrey fluid in a two 

dimensional asymmetric channel with flexible walls. Here, the 

small intestine is treated as an asymmetric channel and the 

chyme passing through it as a Jeffrey fluid.  The walls of 

channel generate strong peristaltic waves which provide 

means of transporting Jeffrey fluid with speed  𝑐 in the 

channel. The upper and lower walls of the channel are 

represented by 𝑌 = 𝐻1 = 𝑑1 + 𝑎1 cos (
2𝜋

𝜆
(𝑋 − 𝑐𝑡))and  𝑌 =

𝐻1 = −𝑑2 − 𝑏1 cos (
2𝜋

𝜆
(𝑋 − 𝑐𝑡) + 𝜙), respectively (Fig. 1).     

 
Fig. 1: Schematic diagram of a two dimensional asymmetric 

channel 

where𝑎1 and  𝑏1 are the amplitudes, 𝜆  is the wave length, 

𝑑1 + 𝑑2 is the width of the channel, 𝜙 is the phase difference 
(0 ≤ 𝜙 ≤ 𝜋) of the waves, 𝜙 = 0 corresponds to symmetric 

channel with waves out of phase and 𝜙 = 𝜋 corresponds to 

the waves in phase, quantities 𝑎1, 𝑏1, 𝑑1 , 𝑑2 and 𝜙 are such 

that, 

𝑎1
2 + 𝑏1

2 + 2𝑎1𝑏1 cos 𝜙 ≤ (𝑑1+𝑑2)2.     (1) 

Therefore, the governing equations of Jeffrey fluid through 

the channel are 
𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0                                                (2) 

𝜌 (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑋
+ 𝑉

𝜕

𝜕𝑌
) 𝑈 = −

𝜕𝑃

𝜕𝑋
+

𝜕𝜏𝑋𝑋

𝜕𝑋
+

𝜕𝜏𝑋𝑌

𝜕𝑌
−

𝜇

𝐾
𝑈,      (3) 

𝜌 (
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑋
+ 𝑉

𝜕

𝜕𝑌
) 𝑉 = −

𝜕𝑃

𝜕𝑌
+

𝜕𝜏𝑋𝑌

𝜕𝑋
+

𝜕𝜏𝑌𝑌

𝜕𝑌
−

𝜇

𝐾
𝑉,       (4)  

where𝜌 is the density, 𝜇 is the dynamics viscosity, 𝑃 is the 

pressure, 𝑈 and 𝑉 are the velocity components in 𝑋 − and 

𝑌 −directions  in a fixed frame. 

The constitutive equation for the stress tensor 𝑆 for a Jeffrey 

fluid is defined by (Srinivas and Kothandapani, 2008) 

𝜏 =
1

1+Λ1

(�̇� + Λ2�̈�),                            (5)  

whereΛ1 and Λ2 are frictional parameter. 

Introducing a wave frame (�̅�, �̅�) with moving with velocity 𝑐 

away from the fixed frame (𝑋, 𝑌) by the transformation as 

follows:                                                               

�̅� = 𝑋 − 𝑐𝑡,     �̅� = 𝑌,   �̅� = 𝑈 − 𝑐,    �̅� = 𝑉,    �̅� = 𝑃(𝑋, 𝑡).      

(6) Substituting Eq. (6) into Eqs. (2) - (5), we obtain  
𝜕𝑢

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 0,                                         (7) 

𝜌 (�̅�
𝜕

𝜕�̅�
+ �̅�

𝜕

𝜕�̅�
) �̅� = −

𝜕 �̅�

𝜕�̅�
+

𝜕𝜏�̅��̅�

𝜕�̅�
+

𝜕𝜏�̅��̅�

𝜕�̅�
−

𝜇

𝐾
(�̅� + 𝑐),   (8) 

𝜌 (�̅�
𝜕

𝜕�̅�
+ �̅�

𝜕

𝜕�̅�
) �̅� = −

𝜕 �̅�

𝜕�̅�
+

𝜕𝜏�̅��̅�

𝜕�̅�
+

𝜕𝜏�̅��̅�

𝜕�̅�
−

𝜇

𝐾
�̅�,             (9)    

where,                                    

𝜏�̅��̅� =
1

1+Λ1
[1 + Λ2 (�̅�

𝜕

𝜕�̅�
+ �̅�

𝜕

𝜕�̅�
)

𝜕𝑢

𝜕�̅�
],                        (10)   

𝜏�̅��̅� =
1

1+Λ1
[1 + Λ2 (�̅�

𝜕

𝜕�̅�
+ �̅�

𝜕

𝜕�̅�
)] [

𝜕𝑢

𝜕�̅�
−

𝜕�̅�

𝜕�̅�
],             (11)   

𝜏�̅��̅� =
1

1+Λ1
[1 + Λ2 (�̅�

𝜕

𝜕�̅�
+ �̅�

𝜕

𝜕�̅�
)

𝜕�̅�

𝜕�̅�
].                        (12) 

The followings are dimensionless variables           

�̅� =
𝜆𝑥

2𝜋
,     �̅� = 𝑎𝑦,   �̅� = 𝑐𝑢,   �̅� = 𝑐𝑣, 𝜏 =

𝜇𝑐

𝑎
𝑇, �̅� =

𝜆𝜇𝑐

2𝜋𝑎2
𝑝 ,

ℎ̅ = 𝑎ℎ                                (13)    

𝑘 =
𝐾

𝜇𝑎2 , 𝛿 =
2𝜋𝑎

𝜆
 ,    𝑅𝑒 =

𝜌𝑐𝑎

𝜇
 ,     𝜆1 =

𝑐Λ1

𝑎
,     𝜆2 =

𝑐Λ2

𝑎
 

where𝛿 is the wave length and 𝑅𝑒 is Reynolds number. 

Using dimensionless variables Eq. (13) into Eqs. (7) – (12), 

yield 

𝛿
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                             (14) 

𝑅𝑒 [(𝛿𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) 𝑢] = −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑇𝑥𝑥

𝜕𝑥
+

𝜕𝑇𝑥𝑦

𝜕𝑦
−

1

𝑘
(𝑢 + 1),   (16)  

𝑅𝑒𝛿 [(𝛿𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) 𝑣] = −

𝜕𝑝

𝜕𝑦
+ 𝛿

𝜕𝑇𝑥𝑦

𝜕𝑥
+ 𝛿2 𝜕𝑇𝑦𝑦

𝜕𝑦
−

1

𝑘
𝑣     (17) 

𝑇𝑥𝑥 =
1

1+𝜆1
[1 + 𝜆2 (𝛿𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
) 𝛿

𝜕𝑢

𝜕𝑥
]       (18)  

𝑇𝑥𝑦  =
1

1+𝜆1
[1 + 𝜆2 (𝛿𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
)] [

𝜕𝑢

𝜕𝑦
− 𝛿

𝜕𝑣

𝜕𝑥
],    (19) 

𝑇𝑦𝑦  =
1

1+𝜆1
[1 + 𝜆2 (𝛿𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
)] [𝛿

𝜕𝑣

𝜕𝑦
]        (20) 

 

Defining a stream function 𝜓  such that 

  𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −𝛿

𝜕𝜓

𝜕𝑥
                          (21) 

Eq.(21) is identically satisfied and  (14) – (20) become 

𝑅𝑒𝛿 [(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)

𝜕𝜓

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ 𝛿

𝜕𝑇𝑥𝑥

𝜕𝑥
+

𝜕𝑇𝑥𝑦

𝜕𝑦
−

1

𝑘
(

𝜕𝜓

𝜕𝑦
+ 1)  (22) 

−𝑅𝑒𝛿3 [(
𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)

𝜕𝜓

𝜕𝑥
] = −

𝜕𝑝

𝜕𝑦
+ 𝛿2 𝜕𝑇𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝑇𝑦𝑦

𝜕𝑦
+

1

𝑘
𝛿

𝜕𝜓

𝜕𝑥
 (23) 

where, 

𝑇𝑥𝑥 =
1

1+𝜆1
[1 + 𝜆2𝛿 (

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)] 𝛿

𝜕2𝜓

𝜕𝑥𝜕𝑦
                     (24) 

𝑇𝑥𝑦  =
1

1+𝜆1
[1 + 𝜆2𝛿 (

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)] [

𝜕2𝜓

𝜕𝑦2
− 𝛿2 𝜕2𝜓

𝜕𝑥2
]      (25) 

𝑇𝑦𝑦  =
1

1+𝜆1
[1 + 𝜆2𝛿 (

𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
)] [𝛿2 𝜕2𝜓

𝜕𝑥𝜕𝑦
]               (26) 

The corresponding boundary conditions are 

𝜓 =
𝑞

2
,  at𝑦 = ℎ1 = 1 + 𝑎 cos (2π 𝑥),  𝜓 = −

𝑞

2
,  at    𝑦 = ℎ2 = −𝑑 −

𝑏 cos(2𝜋𝑥 + 𝜙) 
𝜕𝜓

𝜕𝑦
= −1,  at𝑦 = ℎ1,  

𝜕𝜓

𝜕𝑦
= −1,  at    𝑦 = ℎ2                   (27) 

where𝑞is the flux in the wave frame and 𝑎, 𝑏, 𝑑 and 𝜙 

satisfied 

𝑎2 + 𝑏2 + 2𝑎𝑏 cos 𝜙 ≤ (1 + 𝑑)2. 

Under assumption Low Reynolds number and long wave 

length, Eqs.(22) – (26) become 

0 = −
𝜕𝑝

𝜕𝑥
+

1

1+𝜆1

𝜕𝑇𝑥𝑦

𝜕𝑦
−

1

𝑘
(

𝜕𝜓

𝜕𝑦
+ 1)          (28)   

0 = −
𝜕𝑝

𝜕𝑦
                                                    (29) 

𝑇𝑥𝑥 = 0                                                      (30) 

𝑇𝑥𝑦 =
1

1+𝜆1
(

𝜕2𝜓

𝜕𝑦2 )                                       (31) 

𝑇𝑦𝑦 = 0                                                      (32) 

Elimination of the pressure 𝑝 from Eqs. (28) and (29) by cross 

differentiation, we obtain the compatibility equation as 

follows; 
𝜕4𝜓

𝜕𝑦4 −
1+𝜆1

𝑘
(

𝜕2𝜓

𝜕𝑦2 ) = 0                               (33) 

 

Solution of the problem 

Solving the Eqs. (33) with boundary conditions (27), we 

obtain 

𝜓(𝑦) = 𝑐1 + 𝑐2 + 𝑐3𝑒𝑚𝑦 + 𝑐4𝑒−𝑚𝑦         (34)  

 

where𝑚 = √
1+𝜆1

𝑘
, 
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𝑐1

= −
1

2

(ℎ1+ℎ2){𝑚𝑞(𝑒−𝑚(ℎ1−ℎ2) − 𝑒𝑚(ℎ1−ℎ2)) − 2(𝑒−𝑚(ℎ1−ℎ2) − 𝑒𝑚(ℎ1−ℎ2)) + 4}

𝑚(ℎ1 − ℎ2)(𝑒−𝑚(ℎ1−ℎ2) − 𝑒𝑚(ℎ1−ℎ2)) + 2(𝑒−𝑚(ℎ1−ℎ2) − 𝑒𝑚(ℎ1−ℎ2)) − 4
 

 
𝑐2 =

−
𝑚𝑞(𝑒𝑚ℎ2𝑒−𝑚ℎ1−𝑒−𝑚ℎ2 𝑒𝑚ℎ1 )+2(𝑒𝑚ℎ2 𝑒−𝑚ℎ2−𝑒−𝑚ℎ1 𝑒𝑚ℎ1 )−2(𝑒−𝑚ℎ2𝑒𝑚ℎ2−𝑒−𝑚ℎ1 𝑒𝑚ℎ1 )

𝑚(ℎ1−ℎ2)(𝑒−𝑚ℎ2 𝑒𝑚ℎ1 −𝑒−𝑚ℎ1 𝑒𝑚ℎ2 )+2(𝑒−𝑚ℎ2 𝑒𝑚ℎ2 −𝑒−𝑚ℎ2 𝑒𝑚ℎ1 )−2(𝑒−𝑚ℎ1 𝑒𝑚ℎ2 −𝑒−𝑚ℎ1 𝑒𝑚ℎ1 )

, 

 

𝑐3 = −
(𝑒𝑚ℎ2−𝑒𝑚ℎ1)(𝑞−(ℎ1−ℎ2))

𝑚(ℎ1+ℎ2)(𝑒−𝑚ℎ2𝑒𝑚ℎ1−𝑒−𝑚ℎ1𝑒𝑚ℎ2)+2(𝑒𝑚ℎ2−𝑒−𝑚ℎ1)(𝑒−𝑚ℎ2−𝑒−𝑚ℎ1)
 ,   

 

𝑐4 = −
(𝑒𝑚ℎ2−𝑒𝑚ℎ1)(𝑞−(ℎ1−ℎ2))

𝑚(ℎ1+ℎ2)(𝑒−𝑚ℎ2𝑒𝑚ℎ1−𝑒−𝑚ℎ1𝑒𝑚ℎ2)+2(𝑒𝑚ℎ2−𝑒−𝑚ℎ1)(𝑒−𝑚ℎ2−𝑒−𝑚ℎ1)
 .  

 

The flux at axial any station in the fixed frame is 

�̅� = ∫ (𝑢 + 1)
ℎ2

ℎ1
𝑑𝑦 = 𝑞 + ℎ1 − ℎ2.     (35) 

 

The average flow rate over one period (𝑇 =
𝜆

𝑐
) of the 

peristaltic wave is given by 

𝑄 =
1

𝑇
∫ �̅�

𝑇

0
𝑑𝑡 =

1

𝑇
∫ (𝑞 + ℎ1 − ℎ2)𝑑𝑡 = 𝑞 + 1 + 𝑑

𝑇

0
.   (36)  

 

The pressure gradient is obtained from Eq. (28) as 
𝜕𝑝

𝜕𝑥
=

1

1+𝜆1

𝜕3𝜓

𝜕𝑦3 −
1

𝑘
(

𝜕𝜓

𝜕𝑦
+ 1).         (37) 

 

Substituting Eq.(34) into Eq.(37), Eq.(37) becomes 
𝜕𝑝

𝜕𝑥
= 𝑚3(𝑐4𝑒𝑚𝑦 − 𝑐3𝑒−𝑚𝑦) − 𝑚(𝑐4𝑒𝑚𝑦 − 𝑐3𝑒−𝑚𝑦 − 𝑐2 + 1)    (38) 

 

It is of interest to calculate the pressure rise (∆𝑝) over one 

wavelength as 

∆𝑝 = ∫ (𝑚3(𝑐4𝑒𝑚𝑦 − 𝑐3𝑒−𝑚𝑦) − 𝑚(𝑐4𝑒𝑚𝑦 − 𝑐3𝑒−𝑚𝑦 − 𝑐2 + 1))𝑑𝑥
1

0
  (39) 

 

 

Discussion of Results 

Figs. 2 – 4 illustrate the variation of the volumetric flow rate 

of peristaltic wave with pressure gradient for different values 

of the phase difference, frictional parameter and permeability 

parameter. 

 Fig. 2 depicts the pressure gradient ∆𝑝 against averaged 

volumetric flow rate 𝑄 for different values of phase 

difference  𝜙. It is observed that in the range of values of the 

pressure gradient in the entire pumping region  (∆𝑝 > 0) and 

free pumping region  (∆𝑝 = 0), the volumetric flow rate 

decreases with the increase in values of the phase difference. 

However, in the co-pumping region(∆𝑝 < 0), the volumetric 

flow rate increase with increase in magnitude of the phase 

difference. It means that the pressure rise requires small 

values of phase difference for large volumetric flow rate in the 

pumping and free pumping region. This trend reverses in the 

co-pumping region as pressure drop. It implies that the 

stronger peristaltic waves in the channel width enhance the 

pressure rise, but reduce the volumetric flow rate in the 

pumping and free pumping region. It is also noted that the 

volumetric flow rate is high in the co-pumping region, where 

proper mixing up and absorption nutrient from chyme take 

place. As a result of this, the nutrient of chyme in the intestine 

sweep into the large intestine. 

 

 
Fig. 2:Pressure vs averaged flow rate for different values of 𝜙 
 

 

 
Fig. 3: Pressure vs averaged flow rate for different values of 𝜆 

 

 

 
Fig. 4: Pressure vs averaged flow rate for different values of 𝑘 

 

 

Figure 3 presents effect of frictional parameter 𝜆1on the 

pressure against average flow rate graph. It can be seen that an 

increase in values of 𝜆1 boosts the volumetric flow rate in the 

entire pumping region and free pumping region. Meanwhile, 

the volumetric flow rate reduces in the co-pumping region.  

This causes imbalance in the volumetric flow rate in the small 

intestine which result in abdominal pains. More so, the 

nutrient of chyme sweep into the large intestine without 

proper mixing up and absorption. Fig. 4 shows the influence 

of permeability parameter on the pressure gradient ∆𝑝 against 

averaged volumetric flow rategraph. It can be seen that in the 

entire pumping, free pumping and co-pumping regions, the 

volumetric flow rate gradually reduce with increase in 

permeability parameter. This implies that absorption of 

nutrient from chyme take place; thereby reduce the rate of 

volumetric flow.   

 

Conclusion 

A mathematical model is developed for peristaltic transport of 

chyme through the small intestine. TheJeffrey fluid model is 

used for chyme and Darcy porous model is used for the 

absorption of nutrient in the small intestine. Under the 

assumption of low Reynolds number and long wave 

approximation, the equations governing the flow are 

simplified and solved analytically. The numerical solutions of 

the chyme flow are presented graphically. More so, the 

following observations are drawn from the results: 
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(i) The strong peristaltic waves cause improper mixing up 

and absorption nutrient from chyme. 

(ii) The present of frictional parameter increases the 

volumetric flow rate of chyme  in the small intestine; 

(iii) The fractional parameter causes imbalance flow of 

chyme in the small intestine which may result in 

abdominal pain; 

(iv) Increasing of permeability parameter gradually reduced 

the volumetric flow rate, which means the absorption of 

nutrient from chyme take place. 
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